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ABSTRACT The microstructure of the collagen sheath or weave surrounding a myocyte and the collagen struts
interconnecting neighboring myocytes is incorporated into a fluid—fiber—collagen continuum description of the
myocardium. The sheaths contribute to anisotropic elasticity, whereas the struts contribute to an isotropic component.
Elastic moduli of the composite myocyte-sheath complex and the strut matrix are estimated from existing passive
biaxial loading data from sheets of canine myocardium. The contribution of the sheath to the elasticity of the
myocyte—sheath complex is critically dependent on the helical pitch angle. Calculations for a cylindrical model of the
left ventricle using both a fluid—fiber and fluid—fiber—collagen stress tensor show that the collagen strut matrix tends to
limit muscle fiber lengthening; increase myocardial tissue pressure during systole, with endocardial tissue pressure
exceeding left ventricular pressure; decrease tissue pressure during diastole, and thus facilitate myocardial blood flow;
and aid filling during ventricular relaxation by providing a suction effect that relies on a release of stored elastic energy
from the previous contraction. Calculations show that this energy is stored mostly in the collagen struts.

INTRODUCTION

A sound theoretical formulation for the elastic properties
of the myocardium is fundamental to the description of left
ventricular (LV)' mechanics. A recent approach to a
mathematical description of the heart considered the car-
diac muscle as a fluid—fiber continuum, and neglected the
presence of collagen (Peskin, 1975; Feit, 1979; Chadwick,
1981, 1982, Tozeren, 1983; Pelle et al., 1984; Ohayon et
al., 1987; and Ohayon and Chadwick, 1987). However,
recent measurements on myocardial sheets (Demer and
Yin, 1983) imply that the passive myocardium is not as
anisotropic as the fluid—fiber continuum suggests (Fung,
1984). In this work, we utilize a fluid—fiber—collagen
continuum stress tensor to infer the passive elastic moduli
from experiments, and interpret the results in terms of the
myocardial microstructure.

Robinson et al. (1986) have presented strong arguments
that collagen plays an important role in the mechanism of
LYV filling by storing energy from the previous contraction
to provide a suction effect during relaxation. We investi-
gate this hypothesis by computing the minimum cavity
pressure when filling is prevented and the systolic strain
energy of the different constituents of the connective
tissue.

BACKGROUND, THEORY, ANALYSIS,
AND RESULTS

Collagen Structure in the Myocardium
Anatomical observations have shown that cardiac muscle

tissue has a highly specialized architecture. This structure

1. Abbreviation used in this paper: LV, left ventricular.
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is composed primarily of cardiac muscle cells, or myocytes,
arranged in a more or less parallel weave that we idealize
as “muscle fibers.” We shall denote the local direction of
this group of cells by the unit vector 7. Streeter’s (1979)
measurements have shown that the fiber direction field
defines paths on a nested family or toroidal surfaces of
revolution in the wall of the heart. His results show a
continuously changing orientation 7 of the muscle fibers
through the wall, circumferential near the midwall and
progressively more inclined with respect to the equatorial
plane when moving toward either the epicardium or the
endocardium.

Other studies (Borg and Caulfield, 1979, 1981; Caul-
field and Borg, 1979; Borg et al., 1981; Robinson et al.,
1983, 1986, and 1987) on the connective tissue of mamma-
lian heart muscle give a detailed description of the extra-
cellular structures and their arrangement relative to car-
diac muscle cells (Fig. 1). Each muscle fiber is surrounded
by a sheath of connective tissue (epimisium). This sheath
contains a large number of collagen fibers and far fewer
elastin fibers. Observations on papillary muscle show a
regular geometrical arrangement of this sheath in the form
of a crisscross weave. Such a network could protect the
sarcomere from overstretching. When the fiber is stretched
to sarcomere lengths between 2.3 and 2.5 um, the collagen
fibers are essentially aligned along the axis and the muscle
fiber, thus providing a structure more resistant to deforma-
tion (Robinson et al., 1983).

The connective tissue is also composed of struts formed
by bundles of collagen fibrils (endomisium) that intercon-
nect adjacent muscle fibers. These struts have a diameter
ranging between 120 and 150 nm (Caulfield and Borg,
1979). They appear to be quite slack in the stress-free state
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Sarcomere

and are aligned primarily transverse to the muscle fiber
direction, but branch in quite random directions before
attachment to adjacent myoctes. This hierarchy of branch-
ing structures leads, we believe, to an essentially isotropic
component to the heart structure. The volume occupied by
collagen in the left ventricle was measured and expressed
as a percentage of total cross-sectional area occupied by
tissue. The values obtained by Lenkiewicz et al. (1972)
show that the proportion of projected area of myocardium
occupied by collagen is ~30%.

To be consistent with our description of the components
of the myocardium we specify some definitions and sub-
script notation that are used in this study: (a) The collagen
strut matrix is the endomisium; subscript “cm.” (b) The
collagen sheath is the epimisium; subscript “cs.” (c) The
muscle fiber is a group of myocardial cells without the
epimisium; subscript “mf.” (d) The composite fiber is the
muscle fiber with epimisium (myocyte-sheath complex);
subscript “f.” (e) A collagen fiber from the sheath has the
subscript “cf.”

Continuum Stress Tensor
for the Myocardium

High fluid content acting together with oriented muscle
fibers led Peskin (1975) to suggest a continuum fluid—fiber
stress tensor to describe the rheology of the heart wall:

o= —P, 6 + Ty77; (€))

where T; is the tension (force per unit of myocardial area)
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FIGURE 1 Schematic view of the micro-
structure of the collagen sheath surrounding
myocytes and the collagen struts intercon-
necting neighboring myocytes. From The
heart as a suction pump. T. F. Robinson,
S. M. Factor, and E. H. Sonnenblick. Copy-
right © April 1986 by Scientific American,
Inc. All rights reserved.

in the composite fiber, P, is the hydrostatic fluid pressure
in the heart wall, §; is the Kronecker symbol, and 7; is the
component of the unit vector in the direction of the
composite fiber.

Eq. 1 neglects the isotropic term because of the presence
of the collagen struts. To include this additional effect,
consider the equilibrium of an elemental tetrahedron,
composed of three orthogonal faces and a slanted face with
unit normal, N. The element is oriented in such a way that
the local fiber direction is normal to the face in the x, y
plane. This element is assumed to be a continuum of fluid,
muscle fibers, and collagen. Also, because the element is
infinitesimal the variation of the stresses acting on a side
can be neglected. The state of stress acting on the tetrahe-
dron is shown in Fig. 2. The different stresses acting on this
elementary volume are the pressure P, due to the fluid, the
tension T} due to the action of the composite fibers, as well
as shear and normal stresses S; due to the isotropic matrix
of collagen struts. The stress vector ¢, acting on the slanted
face can be found by requiring the element to be in
mechanical equilibrium, with the result:

G, = —P,n+ T(7-n)r+S 0. )

A stress tensor g exists having the property ¢, =g - 7,
where ¢ is independent of 7i. The component form is:

o; = —P,o; + Ty7m; + S 3)
From classical elasticity theory, Sj; is given by:

S;=2 Hem € + At:m eaij’ (4)

]
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FIGURE 2 Stress components acting on faces of elemental tetrahedral
volume of myocardial continuum.

where ., and A, are the shear modulus and the Lamé’s
coefficient of the collagen strut matrix, ¢; are the compo-
nents of the Lagrangian strain tensor, and e is the diver-
gence of the displacement field (relative volume expan-
sion). We assume that both the fluid phase and the
collagen strut matrix phase are each incompressible. In
that case A\, — « and e — 0 in such a way that a finite
product Ae exists and can be absorbed into the hydro-
static pressure (Spencer, 1972). Substituting Eq. 4 into Eq.
3 yields:

0; = -P 6‘) + Tr TiT; + 2 Hem €5 (5)

In this last expression P now represents the myocardial
tissue pressure defined here as the hydrostatic pressure
modified by the presence of the collagen strut matrix, i.e.:

lim (Ae). (6)
Aoy —

e—0

P=P, -

Further elaboration of the concept of myocardial tissue
pressure is given in the Discussion.

In the myocardium the muscle fibers themselves contain
intracellular fluid. In this formulation no distinction is
made between intracellular and extracellular pressure, i.e.,
we assume the cell membranes are essentially flaccid. The
myocardial fluid—fiber—collagen stress tensor has the same
form proposed by Spencer (1972) for a fiber reinforced
incompressible elastic material (Tézeren, 1986), and by
Humphrey and Yin (1987) for finite deformations. Eq. 5
offers an important improvement over Eq. 1 in that the
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collagen resists a deformation perpendicular to the fiber
direction, whereas the fluid—fiber continuum does not.

Analysis of Biaxial Loading of Passive
Myocardial Tissue

The Young’s moduli of the passive composite fiber (E) and
of the collagen strut matrix (E.,) determine the passive
mechanical properties of the myocardium. These values
can be found from experiments done on excised sheets of
canine myocardium (Demer and Yin, 1983. Assuming that
the collagen strut matrix is incompressible and isotropic, it
follows that E, = 3u,. Thus the shear modulus (k) is
proportional to the Young’s modulus (E_,) in such a
medium. Since relatively thin slices of myocardium were
used, the orientation of the fibers was approximately
uniform. These sheets were submitted to uniaxial and
biaxial loading in the predominant fiber direction and the
cross-fiber direction. We apply the fluid—fiber—collagen
stress tensor ¢ (Eq. 5) to the rectangular parallelopiped
geometry shown in Fig. 3. We assume that the myocardial
tissue is incompressible and we neglect viscoelastic and
gravitational effects. Let the fibers be orientated along the
y-axis (Fig. 3). On each edge of the sheet a uniform
traction is exerted. We denote T, and T, as the tensile
stresses exerted respectively in the y and z directions. No
external traction is exerted in the x direction, but because
of incompressibility ¢, # 0. Under this loading, the
specimen deforms without shear strains (¢,, = ¢,, = €,, = 0).
The three existing constant components of the strain tensor
(€xx» €y» and ¢,) are determined as follows. The condition of
local equilibrium (V - g = 0) yields P = constant. To
determine the magnitude of P and the three constants of
strain, the linearized tissue incompressibility constraint is
required:

6t €y + 6, =0, ™

as well as continuity of stress components on the bounding

Y
X
e X2
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Ty 33 Tv
}:V,
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FIGURE 3 Geometry of myocardial sheet submitted to biaxial traction.
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surfaces Z,, Z,, and Z, of the specimen (Fig. 3):

Ou=—P+2p,6,=0 onZ, (8a)
oy=—P+ T +2up€,=T, onZ, (8b)
6,=—P+2pne,=T, onZ, (8¢c)

The relationship between passive tension and fiber strain
for the composite fiber (8 = 0 in Eq. A2) is:

Ti= E ¢ = Ec¢,, 9)

By substituting Eq. 9 into 8b, we obtain a linear system,
Egs. 7, 8a, 8b, and 8c for the unknowns (P, ¢, €, €,,). TWo
experiments must be analyzed. In one case, strains are not
permitted in the cross fiber z-direction (e, = 0), and in the
other strains are not permitted in the fiber y-direction,
(¢,y = 0). For example, in the case with ¢, = 0, we find
from Eq. 8cthat T, = — P + 2 p.y, €5, but from Eqs. 8a and
T, P = —2u €, hence T, = 4 u, €, OT:

T, = (4/3) Een &5, (10)
Similarly, for the case ¢,, = 0, we find:
T,=[E+ (4/3) Ep] ¢,y (11)

Egs. 10 and 11 show that the modulus of elasticity
measured in the fiber direction (E + 4E.,/3) must be
larger than the one measured in the cross-fiber direction
(4E/3).

For both cases, the full nonlinear relation measured
during loading between stress and strain was fit by an
exponential stress—strain relation that depended on three
coefficients A, B, and C [stress = A exp (B strain) + C],
(Demer and Yin, 1983, their Table I). For small strain,
this stress—strain relation can be expanded in a series in
powers of the strain [stress = (4 + C) + AB-
strain + O(strain?)]. Table I indicates the elastic moduli
of the passive composite fiber £ and the collagen strut
matrix E_, as derived from the linear component (4B) of
the elastic parameters previously fit (Demer and Yin,
1983) for a series of isometric uniaxial tests. The two
values of the Young’s moduli, £, ~ 3.41 + 0.62 x 10°
dyn/cm? and E ~ 3.93 + 1.02 x 10° dyn/cm? have the
same order of magnitude. So, it is clear that for small strain
and during passive state of the myocardium the collagen
strut matrix considerably affects the mechanical properties
of the left ventricular wall. This corroborates a criticism
(Fung, 1984) that the passive myocardium is not as
anisotropic as the fluid—fiber model (Eq. 1) originally
suggested.

It is interesting to calculate how the myocardial tissue
pressure would change in these experiments. For example
corresponding to the case for which Eq. 10 was derived, we
find P = —(2/3) E, ¢, Taking ¢, = 0.1, and E_, = 3.4 x
10° dyn/cm?, we find P ~ —17 mmHg. To explain the
negative tissue pressure we note that a positive strain in the
cross-fiber z-direction implies a compressive strain across
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TABLE 1
ELASTIC MODULI OF THE PASSIVE COMPOSITE FIBER E
AND OF THE COLLAGEN MATRIX E_,

Unit (g/cm?)
Specimen AB A48
(fiber (cross-fiber E E_,
direction) direction)
310* 317.3* 420.4* * *
317 295.8 263.6 32.2 197.7
318 1547.7 686.5 861.2 514.9
324+ 711.1* 1227.4* * *
407 604.6 326.8 2717.8 245.1
422 1129.5 718.5 351 583.9
423 845.6 514.1 331.5 385.6
602* 57.8* 330.5* * *
609* 708.8* 1036.5* * *
623 829.6 416.2 413.4 312
701 799.5 260.8 538.7 195.6
Mean 864.6 + 161.0 463.8+83.9 400.8+104.0 347.8 +62.9
(g/cm?)
(x10° 8.48 + 1.58 4.55+0.82 393+1.02 3.41+0.62
dyn/
cm?)

Table entrees with an asterisk had a larger cross-fiber stiffness than
parallel fiber stiffness, and were not included in the determination of the
mean values. Values represent the loading portion of the cycle only.
(Adapted from experimental results of Demer and Yin, 1983.)

the specimen thickness in the x-direction due to tissue
incompressibility. Hence, to have zero normal stress on the
unloaded face (Z,), a negative tissue pressure is required to
counteract the outward push of the collagen strut matrix.

Effects on the Mechanics
of the Left Ventricle

Some experimental results (Robinson et al., 1986) have
suggested that collagen tissue may play an important role
in the mechanism of the LV filling, by storing energy from
contraction during systole as elastic energy to provide the
potential energy for a suction that aids filling. In order to
investigate this hypothesis, we extend our previous work
done on the mechanics of the LV (Chadwick, 1981, 1982;
Pelle et al., 1984; Ohayon et al., 1987; and Ohayon and
Chadwick, 1987) by including the effect of this connective
tissue in our model.

Equations of the Model. A detailed description
of the mathematical model is given elsewhere (Chadwick,
1982). The basic assumptions and equations used in the
LV model are given in the Appendix.

The continuity of normal stress components on the
endocardial (244, Or On p = 1) and on the epicardial (2.,
or on p = a) surfaces are:

P(p, 1) = P(t) + 2ueme,(p,t) onp=1;  (12a)
P(p, t) = 2ucm €, (p,t) oOnp=a, (12b)
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where P, is the LV cavity pressure. Note that in these two
boundary conditions, there is no contribution from the
fiber stress since the assumed fiber direction (7) is perpen-
dicular to the radial direction (Eq. A1). For this condition,
Eq. 5 shows that the radial component of the stress tensor is
not affected by the presence of the fibers. However,
because of the presence of the collagen strut matrix in the
myocardial tissue, the tissue pressure is not continuous
across the endocardial (p = 1) and epicardial (p = )
surfaces. At each instant of time during the cardiac cycle,
the LV structure is assumed to be in a state of mechanical
equilibrium. The local equilibrium equation is V - ¢ = 0,
or:

VP =p VU +7(T;V-T+7-VT}) + T{(7 - V)7. (13)

The displacement field u satisfying the incompressibility
condition V - % = 0, given in the Appendix happens also to
be harmonic so that V% = 0. Since the problem is
axisymmetric, all terms involving theta derivatives (cir-
cumferential coordinate) vanish. So, the circumferential
component of the equilibrium equation implies 7;/dz = 0
which then implies, by using the axial component of the
equilibrium equation, that dP/3z = 0. Therefore P and T;
are functions of the radial coordinate only. So, the radial
component of the equilibrium equation reduces to:

aP(pv t) _ _ T[(P, t)
p

9 (14a)

cos™y(p)

or its radially integrated form:
« d
Po,1) = Plev 1) + [ Ty(p. 1) cos’y(p) = . (14b)
] P

The normal state of deformation of the structure includes
torsion of the cylinder due to the rotation of the apex,
which is free to rotate with respect to the assumed fixed
base. Global static equilibrium requires that the net verti-
cal force and moment acting on the apical surface of the
cylinder are zero, these equations are given respectively
by:

P(t) =2 f “
- [Ti(p, 1) sin®y(p) + 2pten €,(t) — P(p, t)]p dp;

0- f * [Tip, £) cos ¥(p) sin v(p) + 2utem €, )]0% dp. (15b)

(15a)

Integrating the last term of Eq. 15a by parts and using the
differential expression of the local equilibrium condition
Eq. 14a, the continuity of normal stresses on the endocar-
dial and epicardial surfaces Eqs. 12a and 12b, and the
component of the displacement field Eq. A3, the vertical
equilibrium of the bottom plate Eq. 15a can also be
expressed as:

0= 3""cm(a2 - l)ezz(t)
+ [ “ Ty(p, 1) [2 sin>y(p) — cosy(p)] pdp. (16)

Eqgs. A2, A3, A4, 12, 14b, 15a, and 16 are fundamental
relations for the model of left ventricular mechanics and
determine the state of deformation, the stress field, and the
activation function when ventricular pressure and volume
are specified as a function of time. With simultaneous
activation of fibers, this system constitutes a coupled
algebraic system for 8(¢), C,(¢), and 6,(¢). Once these
quantities are determined the transmural distributions of
fiber strain, fiber stress, and myocardial tissue pressure can
be calculated.

Pressure—Volume Relation. The global me-
chanics of the left ventricle is represented by the left
ventricular pressure—volume relationship. This relationship
is useful to study the interaction of the LV with the
systemic circulation, or for estimation of the elastic param-
eters (E, gy, E*, T,) from pressure-volume data.

Our theory predicts a pressure-volume relationship that
has the form of a linear time-varying elastance model as
was found experimentally by Sagawa (1978):

P(2) = 6(t) [V(1) — V(1))

The elastance &(¢) and zero pressure volume V() can be
expressed in terms of functions that we tabulated for
convenience:

(17a)

E) [fi + §0) 2 + B0 + £0)° L]
OV | mrtomr i, | T
V) = v,
_2VeBT[ s tED e + 50 s 179
E() fi+EDL+EO 5+ E0 S]]
where
E(t) = bon/ E(0), (17d)
and
3
f4=ﬁ(a1— 1)} (a® + 1), (17¢)
and
3
hy = 7 (@@ - 12+ 1). 17f)

The functions f,, f5, f3, &1, &2, &3, 11, and h, depend on the
geometrical parameters a and v, and are tabulated in
Table II. The two linear P,() — V(¢) relationships at end
diastole (8 =0) and end systole (8 = 1) can be easily
obtained from these last equations. V,(¢) at end diastole is
equal to the unstressed volume ¥, of the relaxed ventricle
and it becomes minimal at end systole. Note that for a
fluid—fiber myocardium (£(¢) = 0), we obtain from Eq. 17,
the same end-diastolic and end-systolic pressure-volume
lines presented by Chadwick (1982).
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TABLE 11
FUNCTION TABULATIONS FOR
PRESSURE-VOLUME RELATION

TABLE II (cont.)

8(@, 7o)
Yo
a 50° 60° 70° 80° 90°
1.2 0.050 0.046 0.041 0.036 0.032
1.4 0.537 0.485 0.433 0.385 0.342
1.6 2.380 2.147 1.915 1.698 1.510
1.8 7.292 6.572 5.855 5.188 4.609
2.0 18.148 16.340 14.541 12.868 11.419
hy(a, 7o)
Yo
a 50° 60° 70° 80° 90°

1.2 0.002 0.002 0.003 0.004 0.005
1.4 0.010 0.013 0.019 0.025 0.029
1.6 0.032 0.043 0.060 0.078 0.090
1.8 0.079 0.105 0.146 0.188 0.218
20 0.170 0.223 0.306 0.392 0.454

hl(a! ‘Yo)

Yo
a 50° 60° 70° 80° 90°

1.2 0.061 0.069 0.076 0.081 0.085
1.4 0.356 0.401 0.438 0.467 0.489
1.6 1.143 1.284 1.397 1.483 1.551
1.8 2.838 3.178 3.445 3.645 3.800
2.0 6.066 6.776 7.319 1.716 8.022

f|(¢!, 70)
Yo
a 50° 60° 70° 80° 90°
1.2 0.000 0.000 0.000 0.000 0.000
1.4 0.001 0.001 0.002 0.002 0.002
1.6 0.003 0.005 0.008 0.009 0.009
1.8 0.009 0.015 0.020 0.023 0.024
2.0 0.021 0.033 0.044 0.050 0.052
fl(a’ 70)
Yo
a 50° 60° 70° 80° 90°
1.2 0.006 0.007 0.007 0.008 0.008
1.4 0.059 0.064 0.067 0.070 0.071
1.6 0.234 0.249 0.260 0.268 0.271
1.8 0.651 0.683 0.707 0.724 0.728
20 1.488 1.541 1.579 1.607 1.611
fs(a, 70)
Yo
a 50° 60° 70° 80° 90°
1.2 0.072 0.072 0.072 0.072 0.072
1.4 0.666 0.664 0.662 0.660 0.659
1.6 2.620 2.607 2.594 2.581 2.573
1.8 7.266 7.213 7.157 7.105 7.070
20 16.587 16.427 16.255 16.100 15.995
&, %)
Yo
a 50° 60° 70° 80° 90°
1.2 0.000 0.000 0.000 0.000 0.001
1.4 0.002 0.003 0.004 0.005 0.005
1.6 0.007 0.013 0.018 0.022 0.023
1.8 0.022 0.039 0.055 0.065 0.068
2.0 0.056 0.096 0.134 0.158 0.166
gl(aa ‘Yo)
Yo
a 50° 60° 70° 80° 90°
1.2 0.008 0.009 0.009 0.008 0.008
1.4 0.086 0.093 0.094 0.090 0.085
1.6 0.387 1.417 0.416 0.399 0.376
1.8 1.200 1.286 1.278 1.218 1.144
20 3.022 3225 3.188 3.023 2.827
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Numerical Results. We present calculated
results that show the effects of the isotropic collagen
matrix on the mechanics of the LV, by fitting the fluid-
fiber model and the fluid—fiber—collagen model to the same
pressure and volume waveforms shown in Fig. 4. To be
consistent, the myocardial volume (V) must be the same
in the two models.

V=V, (o — 1) = constant. (18)

When the mechanical properties of the myocardium are
changed by introducing the collagen, the elastance of the
ventricle, 6(¢) (Eq. 17b), increases and the ventricle has a
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FIGURE 4 Pressure and volume input data waveforms used in computa-
tions.
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FIGURE 5 Pressure-volume loop and filling index P*. Collagen struts
(Mem # 0) decrease P*.

steeper end-diastolic line. For the two models the end-
diastolic point in the P,V plane is fixed, and to maintain
constant V,,, new values of @ and ¥, must be computed. To
maintain the contractility (end-systolic pressure-volume
line) and the end-systolic P,~V point fixed, new values of
E* and T, must also be computed. Fig. 5 illustrates the
change in slope of the end-diastolic line, the change in ¥,
and the constancy of the end-systolic line.

The results presented here were obtained for the follow-
ing values for the fluid—fiber model: E = 2 x 10° dyn/cm?
Yo = 70°% R;/L, = 0.324 (inner radius/length of the
ventricle at unloaded diastole); E* = 25 x 10° dyn/cm?
T, = 6.3 x 10°dyn/cm? ¥, = 32.7 ml and a = 1.6. When
collagen is introduced (E, = 1.7 x 10° dyn/cm?), we cal-
culate E* = 35 x 10°dyn/cm?, T, = 10.5 x 10° dyn/cm?,
V, = 43.4 ml, and a = 1.46. Somewhat smaller values of
the passive elastic moduli were needed than were deter-
mined in Table I, which overestimate the cycle average of
loading and unloading. Fig. 6 shows that the effect of the
collagen tends to equalize the transmural distribution of
the composite fiber strain during the cardiac cycle and
limit muscle fiber lengthening at end diastole. Note that

o b
end diastole

-5

end systole

~—_

: Without collagen matrix

= -

-——-- : With collagen matrix
-20 | | | | | | | | | J

COMPOSITE FIBER STRAIN %

0.6 ©.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.8 1.0

Endocardium (p-1)/(-1) Epicardium
FiGURE 6 Effect of collagen strut matrix on the transmural distribution

of fiber strain.
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MYOCARDIAL TISSUE PRESSURE (mmHg)

0.0 0.1 0.2 03 0.4 ©5 06 7 08 09 1.0
(p-1)/(o-1)

FiGURe 7 Effect of collagen strut matrix on the transmural distribution
of tissue pressure.

Endocardium Epicardium

the myocardial tissue pressure at the subendocardial layers
exceeds the ventricular pressure at the end-systolic state
(Fig. 7), whereas the opposite is true during end diastole.

The increase of collagen density in the myocardium is
related to an increase in the Young’s modulus of the
collagen strut matrix E_,. To better understand the effect
of the proportion of collagen on the ventricular perfor-
mance, we do the following simulation. Maintaining the
end-systolic and end-diastolic LV pressures, the rheologi-
cal properties of the cardiac fibers, and the geometrical
parameters of the model constant, the results (Table III)
show that, when E_, increases, the passive elastance of the
ventricle increases faster than the active elastance (col-
umns 2 and 3, Table III), and the ejection fraction (EF)
and the stroke volume (SV) both decrease (columns 4 and
5, Table III).

Elastic Energy Storage in the Myocardium

Negative cavity pressures can occur when filling is pre-
vented. We investigate the effect of the collagen strut
matrix on that process by simulating a closed mitral valve
during the diastolic phase. This forces the ventricle to
continue its isovolumic relaxation phase until the passive
state (1’) shown in Fig. 5. During this phase, the ventricu-

TABLE III
EFFECT OF ELASTIC MODULUS OF COLLAGEN STRUT
MATRIX ON END-DIASTOLIC ELASTANCE (6,)
END-SYSTOLIC ELASTANCE (¢€,), STROKE
VOLUME (SV), AND EJECTION FRACTION (EF)

E.. 6 &, sV EF
dynfcm? mmHg/ml mmHg/ml ml
1.7 x 10° 0.725 3.973 30.246 0.602
3.4 x 10° 1.244 4.535 24.338 0.514
5.1 x 10° 1.762 5.084 20.869 0.452
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lar pressure decreases and becomes negative (provided the
end-systolic volume is less than V) to reach the minimum
P* at the intersection with the end-diastolic P,—¥ line. This
pressure (P*) is the minimal achievable P, and serves as an
index of the importance of the stored elastic energy in the
myocardium. The computations with collagen give P* =
—17.4 mmHg, and without collagen, P* = —3.6 mmHg.
In both cases the calculation of P*, with (¢ # 0) and
without (¢ = 0) the collagen strut matrix, is obtained from
Eq. 17 with 8 = 0 and V() equal to end-systolic volume.
Thus, we show that the collagen provides a mechanism for
greater storage and release of elastic energy and hence a
greater potential for diastolic suction to aid filling. The
experimental results of Yellin et al. (1986) on anesthetized
dogs show that, in the isovolumic nonfilling cycle induced
by occluding the mitral valve at end systole, the LV relaxes
to a pressure minimum P* in the range of —7.3 + 3.3
mmHg. Even more negative values were reported by
Tyberg et al. (1970). The larger calculated suction pres-
sure can be partially explained by unavoidable flow from
Thebesian drainage in the experiments.

In order to compare the elastic strain energy stored by
the collagen strut matrix with that stored by the collagen
sheath, we compute the strain energy stored in the passive
constituents of the myocardium at the end-systolic state:

W= f o,de, = E f ¢de + 2y [ de,  (19)

where the limits of integration (in Eq. 19) are from the zero
strain reference state to the strain level at state 3 of Fig. 5.
This computation was done with and without the presence
of the collagen strut matrix in the myocardium. The second
term of the right expression of Eq. 19 represents the energy
stored by the collagen strut matrix and the first term is the
energy stored by the passive elements of the composite
fiber (collagen sheath, Z lines of the sarcomeres, etc). It
appears from the results (Fig. 8) that: (a) the collagen
strut matrix stores more energy than the collagen sheath
(curves 1 and 2); (b) the energy stored by the myocardium
with the collagen strut matrix is larger than without the
collagen strut matrix (curves 3 and 4); (c¢) the energy
stored by the collagen strut matrix is maximal in the
subendocardial layers (curve 1); and (d) the energy stored
by the passive elements of the composite fiber is maximal
in the subepicardial layers (curves 4 and 2). These results
are consistent with experiments (Robinson et al., 1986)
illustrating the more efficient filling of mammalian hearts
compared to amphibian hearts, where the former have a
denser collagen strut matrix.

Effective Elasticity of the Composite Fiber

The relationship between the effective Young’s modulus of
one composite fiber (E¢), the modulus of one muscle fiber
(E ), and the modulus of a fiber in the collagen sheath
(Ey) is investigated, under the assumption that the col-
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FIGURE 8 Transmural distribution of passive elastic strain energy
stored in collagen at end-systole. Curve 1, energy stored in struts; curve 2,
energy stored in sheaths; curve 3, energy stored in struts and sheaths;
curve 4, energy stored in passive elements of composite fiber when no
struts are present.

lagen sheath remains in contact with the muscle fiber. The
total work required to stretch the composite fiber (W}) is
equal to the work used to stretch the muscle fiber (W)
plus the work used to stretch all helicoidal collagen fibers
in the sheath (W):

W= Wy + W (20)

We use Eq. 20 to derive the effective Young’s modulus of
the composite fiber. The expression for the total work is
given by:

1
Wr'EE;Afozv 21

where A;, L, and ¢, are respectively the total cross-
sectional area, the reference length, and the axial strain of
the composite fiber. For convenience, let L be chosen equal
to the axial pitch of the helicoidal collagen fibers. The work
used to stretch only the muscle fiber is:

1
Wmf = 5 E;nf Amf Le:v (22)

where A is the cross-sectional area of the muscle fiber.
Let n be the total number of helicoidal collagen fibers on a
circumference that form the sheath of collagen, then the
work used to stretch the sheath is:

We = 5 nE Ag L, @)
where Ay, L;, and ¢4 are respectively the cross-sectional
area, the initial length, and the strain of the collagen fiber.
Let ¢ be the inclination of the helicoidal collagen fiber with
respect to the equatorial plane of the muscle fiber (Fig. 9).
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FIGURE 9 Schematic showing
geometrical parameters of com-
posite fiber.

Its initial length is also expressed as:

L
g 24
The expression of the collagen fiber strain ¢; depends on
the circumferential (ey) and axial (e,,) strain of the muscle
fiber:

€ = €pg COSzlll + €, Sin2¢/. (25)

Assuming that the muscle fiber is incompressible, under-
goes axisymmetric deformation, and keeps its assumed
cylindrical shape during deformation, the relationship
between the principal strains are:

(26)

€ = _2600 = —26",

where ¢, is the radial strain. Substituting Egs. 24, 25, and
26 into Eq. 23, then substituting Eqgs. 21, 22, and 23 into
Eq. 20, we obtain the effective Young’s modulus of the
composite fiber:

1
Ej=—

A, 4 siny

it Eong + ——— A (25iny — cos’y)’ ch} @7

The number of collagen fibers (n) on a circumference of
the muscle fiber can be expressed in terms of the radius of
the muscle fiber (R), the perpendicular distance between
the centers of two adjacent collagen fibers (d), and the
pitch angle of the weave (¥):

n= Z(% simﬁ). (28)

d
Note that the first factor of two in Eq. 28 is due to the
superposition of two networks of parallel fibers of collagen
of opposite angular orientation with the respect of equato-
rial plane. Substituting Eq. 28 into Eq. 27, the effective
modulus of the composite fiber can also be expressed as:

A A
E;= —“"[E:nr + =L f(¥) E4 (29)

Af anl' d
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with

SO = (2sin’y — cos?y)>. (30)

It is clear from Eq. 29 that the modulus of the composite
fiber E{ depends strongly on the pitch angle of the collagen
weave (). This dependence is introduced by the geomet-
rical function f() given in Eq. 30. This function is plotted
in Fig. 10 and is seen to be non-negative. It appears that,
for one particular pitch angle of the network (¢ = tan~'(1/
V/2) ~35.3°), the collagen weave has no effect on the elastic
properties of the composite fiber (f(y) = 0). For that
particular orientation, we have no strain of the collagen
fibers (e = 0). This possibility is related to the incompres-
sibility of the muscle fiber. When the composite fiber is
extended for example, the length of the helicoidal collagen
fibers tends to increase with the increased length of the
composite fiber, but also tends to decrease with the reduced
radius of the composite fiber resulting from incompressibil-
ity. So, for this pitch angle of the weave, the combination
gives zero strain of the collagen fibers. Note that due to the
incompressibility condition, a network comprised only of
circumferential collagen fibers (Y = 0°) also affects the
elasticity of the composite fiber (Fig. 10). The maximal
effect is observed for Y = 90°, when the collagen is aligned
along the axis of the muscle fiber.

The relative contributions of the passive elastic elements
in the muscle fiber and the collagen sheath to the passive
elastic modulus of the composite fiber can be obtained in
principle from Eq. 29. Unfortunately, a diversity of experi-
mental techniques is required to critically test this relation-
ship. Quantitative ultrastructural studies are needed to
determine the geometrical factors, and the elastic moduli
must be determined for both an unskinned and skinned
cardiac fiber.

flw)

0.0 | [ | L1
[ 10 20 30 490 50 60 T0 80 90

PITCH ANGLE (DEG)

FIGURE 10 Helix angle function f(y) given in Eq. 30.
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DISCUSSION

The concept of myocardial tissue pressure as introduced in
the subsection Continuum Stress Tensor for the Myocar-
dium requires further comment with regards to whether or
not such pressure has a physical meaning, its measureabili-
ty, and its relation to the concept of tissue fluid pressure
introduced by Bogen (1987).

The suggestion and confusion that tissue pressure may
not be a physical entity can be traced to the use of
minimization of elastic strain energy to derive the equa-
tions for elastic equilibrium. In the case of an incompressi-
ble elastic material, the incompressibility constraint is
introduced into the strain energy function via an arbitrary
Lagrange multiplier. After minimization, the arbitrary
Lagrange multiplier appears in the equations of equilib-
rium in the form of an isotropic stress that can be identified
as a hydrostatic pressure.

There are possibly three sources of confusion: the term
“arbitrary,” the term “Lagrange multiplier,” and the
concept of hydrostatic pressure in a solid. In fact, the
arbitrariness is only temporary. The Lagrange multiplier
can be completely determined from the solution of the
equations of equilibrium and the boundary conditions.
Nevertheless, the “stigma” of the mathematical term,
“Lagrange multiplier,” remains and gives the aura of
unreality. Exactly the same situation arises in incompressi-
ble fluids, but without the aura of unreality. The dynamic
equations for the motion of an inviscid, incompressible
fluid can be derived from Hamilton’s principle. The incom-
pressibility constraint is introduced into the energy func-
tion via an arbitrary Lagrange multiplier, which also
appears in the equations of motion after the variational
process (Sommerfeld, 1950). However, the confusion
about the Lagrange multiplier being identified with pres-
sure in a fluid and having a physical meaning does not
usually arise.

The different conceptions in the fluid and solid case are
evidently tied to the ease of measureability. Pressure in a
fluid is routinely measured, whereas the measurement of
hydrostatic pressure in a solid is technically very difficult.
Ease of measurability should not be regarded as a deter-
minant of physical reality. Likewise the myocardial tissue
pressure introduced and calculated in the present work has
a physical meaning, even though it may be difficult to
measure. Our argument is based on the idea that it
represents the continuum approximation to certain stresses
existing in the fluid and collagen components that directly
act on adjacent structures, such as small intramyocardial
blood vessels, etc. Heineman and Grayson (1985) have
measured pressure inside the beating myocardium using a
sophisticated servocontrolled micropipette device. Does
that transducer measure myocardial tissue pressure as
defined here? We feel that it does not determine the full
tissue pressure, but only the hydrostatic component since
the transducer has an open end. However, a transducer
with an end closed by a large enough spherical capsule (but
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small enough not to cause significant tissue distortion)
would sense the isotropic component of both fluid and
collagen, and hence the full tissue pressure.

Bogen (1987) introduced a method to calculate tissue
fluid pressure in swelled isotropic tissue. During swelling
with no external work on the boundaries, he found the
pressure can be calculated as the derivative of that part of
the strain energy not involving the incompressibility con-
straint, with respect to the volumetric dilatation. To make
that more explicit let:

W= m"' Wel, (31)

where W is the total strain energy, W, is that part due to
incompressibility constraint, and W, is the remaining
elastic part. According to Bogen:

v,

P ,
de

32)
where e is the volumetric dilatation. In terms of the small
deformation analysis used here,

e=¢, + €, + ¢, (33)

If we specialize the strain energy function (Eq. A6) for the
case of no fibers and zero shear, then

Wa = benl€x + €y + €). (34)
For isotropic swelling ¢, = ¢,, = ¢, = ¢, and e = 3¢, s0
that:
1
Wa =3 bem €” (33%)

Then from Eq. 32 we calculate
P- % b €. (36)

Alternatively, we can determine the myocardial tissue
pressure directly from continuity of normal stress acting on
the face of a small cubical element to obtain the same
result:

O =0y =0, =0=—P + 2u ¢ 37

or

2
P=2#¢,,.€-=§u¢me~

Thus we can conclude that the myocardial tissue pres-
sure introduced in this paper is identical with that calcu-
lated using Bogen’s method. It should be pointed out,
however, that for swelling of anisotropic tissue, or for
constant volume deformations, the equations of equilib-
rium and boundary conditions must be used to determine
the tissue pressure. It is also interesting to mention that Eq.
32 is equivalent to the statement that dW = 0 for free
adiabatic swelling. From Eq. A6, W, = (— P, + A.ge/2)e,
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sodW = (=P, + Age + 2uqe/3) de = 0. Taking the limit
Aem — %, € — 0, and remembering

P=P,— lim Age,

A — @

e—0

we recover Egs. 36 and 37.

Throughout this work we have used a linear analysis to
approximate the behavior of the myocardium and the left
ventricle. We feel that this approach may not be as
restrictive as is commonly believed. It is very difficult to
eliminate gross sarcomere length nonuniformity due to
ischemia and mechanical damage in preparations used to
determine the stress—strain relations in cardiac tissue.
Because of the series arrangement of sarcomeres, the
strain-hardening behavior of the gross passive tissue may
be exaggerated by overstretched sarcomeres. Elimination
of these effects tends to extend the linear range of the
passive muscle. The experiments of ter Keurs et al. (1980)
on trabeculae from the rat right ventricle show that the
linear range of the passive stress—strain relation is extended
to 20% strain, which is larger than our calculated operating
range. In that preparation ends were not damaged, the
small diameter insured sufficient oxygenation, and the
sarcomere length was servocontrolled. Furthermore, the
active stress—strain relations were linear provided the
extracellular Ca?* levels did not saturate the response.

The small deformation approximation has also been
used in this study. The calculated fiber strains of <20% are
consistent with the measurements of Printzen et al. (1986)
on open-chested dogs. Though it is possible to carry out a
finite deformation analysis on the cylindrical model
(T6zeren, 1983), we felt any quantitative improvement in
accuracy would be offset by the uncertainty in the refer-
ence configuration, and limitations of the cylindrical geom-
etry itself. For those reasons we have concentrated on
developing linear mathematical techniques that can be
readily applied to more realistic geometries and corrected
for finite deformations using perturbation techniques.

APPENDIX

Model for the Mechanics
of the Left Ventricle

A linear theory is used to describe the mechanics of the LV. The geometry
of the LV is taken as a finite thick-walled cylinder. The upper surface or
base (at z = 0) is assumed to be fixed. On this surface radial displace-
ments are allowed, but axial and circumferential displacements are zero.
The bottom surface or apex (at z = — L) is assumed to be a free plane
which can translate vertically and twist as a rigid body about the axis of
the cylinder. Radial displacements are allowed to occur to maintain the
cylindrical shape.

The myocardium is considered as a fluid—fiber—collagen continuum
described by the constitutive law given in Eq. 5. The fiber direction field
in cylindrical coordinates (p, 0, z) is taken as:

T = cosy(p)é, + siny(p)e,. (A1)

Thus, the fibers form regular helices on cylindrical surfaces. The fiber
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inclination angle y(p) (relative to the equatorial plane) varies linearly
across the wall from y, = —70° at the epicardium to vy, = 70° at the
endocardium (Streeter, 1979).

The relationship between composite fiber tension T; and strain ¢ is
approximated by a linear relationship (Chadwick, 1982), both in the
passive state (characterized by the elastic modulus E'), and the maximally
active state (characterized by the elastic modulus E * and active tension at
zero strain, T,). During the cardiac cycle the composite fiber rheological
behavior is represented by a linear combination of these two states using
the time-dependent activation function 8(¢); (0 <8 < 1):

T, = Ei(t)¢ + BT, with E((t) = (1 — B) E + BE*. (A2)

The reference unstressed LV configuration is defined during the
passive state at zero transmural pressure (zero epicardial pressure is
assumed). In this state the sarcomere length is assumed to be 1.9 um
(Feit, 1979). Inertial, gravitational, viscoelastic, and transmural delay in
activation effects are neglected.

A cylindrical model with anisotropic fibrous material can expand both
circumferentially and longitudinally and can also rotate around its axis.
By assuming axisymmetry, the pressure, tension, and fiber strain are
functions of time (¢) and a normalized radial coordinate p = R/R;
(1 = p < a) only, where « is the ratio of outer (R,) to inner (R;) radius in
the reference state. A displacement field u(p, z, £) can be derived in
cylindrical coordinates, that satisfies the tissue incompressibility con-
straint in the limit of infinitesimal strain (Chadwick, 1981):

u, = R[-(1/2)C,(1)p + Ci(1)/(Rip));
uy = —zpRI()/Ly;
u, = C(1)z, (A3)

where L, is the length of the cylinder in the reference configuration and
C,(1), Cy(2), and 6,() are arbitrary functions of time. C,(¢) is the axial
strain, 6,(¢) is the twist angle of the bottom plane located at z = — L, and
Cy(2) is related to volumetric strain (cf. Eq. A5). When viewed from the
apex, a clockwise rotation defines the sense of positive .. The infinitesi-
mal strain of the composite fiber is expressible as a function of the known
linear radial distribution of the helicoidal pitch angle vy(p) and the
displacement components (u,, u,, u,) given by Egs. (A3):

=G V)il - 7. (A4)
In the small deformation theory the condition of conservation of myocar-
dial volume leads to the following expression that relates the chamber
volume ¥(¢) to the volumetric strain C,(z):

V(1) = Vo[l + 2G(1)/RY), (AS5)

where V, is the volume of the cylinder in the reference configuration.

The constitutive relation for cardiac tissue, Eq. S, can also be formu-
lated in terms of a strain energy function W expressed in cartesian
coordinates (x, y, z):

W= (=P, + Ae€)e/2 + (s + €, + &)
+ 26y + &, + €)
+ BT/ ) [Tien + Ty, + Tie
+ 2(1,76y + 7,76, + T,TE)]
+ (E/Dlrien + Tiey + Tien
+ 2Ty + TaTi6 + TN (A6)

The authors are very grateful for useful discussions with Dr. F. C. P. Yin,
Department of Medicine, Johns Hopkins University, Baltimore; Dr. T. F.
Robinson and Dr. E. L. Yellin, Department of Medicine, Albert Einstein
College of Medicine, New York; Dr. G. Pelle, Laboratoire de Mécanique

1087



Physique, University of Paris Val-de-Marne; and Dr. J. Tyberg, Depart-
ments of Medicine and Medical Physiology, University of Calgary.

Received for publication 14 December 1987 and in final form 27 May
1988.

REFERENCES

Bogen, D. K. 1987. Strain energy descriptions of biological swelling I:
Single fluid compartment models. ASME J. Biomech. Eng. 109:252—
256.

Borg, T. K., and J. B. Caulfield. 1979. Collagen in the heart. Tex. Rep.
Biol. Med. 39:321-333.

Borg, T. K., and J. B. Caulfield. 1981. The collagen matrix of the heart.
Fed. Proc. 40:2037-2041.

Borg, T. K., W. F. Ranson, F. A. Moslehy, and J. B. Caulfield. 1981.
Structural basis of ventricular stiffness. Lab. Invest. 44:49-54.

Caulfield, J. B, and T. K. Borg. 1979. The collagen network of the heart.
Lab. Invest. 40:364-372.

Chadwick, R. S. 1981. The myocardium as a fluid-fiber continuum:
passive equilibrium configurations. Adv. Bioeng. 135-138.

Chadwick, R. S. 1982. Mechanics of the left ventricle. Biophys. J.
39:279-288.

Demer, L. L., and F. C. P. Yin. 1983. Passive biaxial mechanical
properties of isolated canine myocardium. J. Physiol. (Lond.).
339:615-630.

Feit, T. S. 1979. Diastolic pressure-volume relation and distribution of
pressure and fiber extension across the wall of a model left ventricle.
Biophys. J. 28:143-166.

Fung, Y. C. 1984. Biodynamics: Circulation. Springer-Verlag, New
York. 68-71.

Heineman, F. W., and J. Grayson. 1985. Transmural distribution of
intramyocardial pressure measured by micropipette technique. Am. J.
Physiol. 249 (Heart Circ. Physiol. 18):H1216-H1223.

Humphrey, J. D., and F. C. P. Yin. 1987. A new constitutive formulation
for characterizing the mechanical behavior of soft tissues. Biophys. J.
52:563-570.

Lenkiewicz, J. E., M. J. Davies, and D. Rosen. 1972. Collagen in human
myocardium as a function of age. Cardiovasc. Res. 6:549-555.

Ohayon, J., R. S. Chadwick, and C. Oddou. 1987. Effet d’une excitation
intramyocardique radiale et uniforme sur la mécanique du ventricule
gauche: étude théorique. C. R. Acad. Sci. Paris Sér. 11. 305:335-338.

1088

Ohayon, J., and R. S. Chadwick. 1988. Theoretical analysis of the effects
of a radial activation wave and twisting motion on the mechanics of the
left ventricle. Biorheology. 25:435-447.

Pelle, G., J. Ohayon, C. Oddou, and P. Brun. 1984. Theoretical models in
mechanics of the left ventricle. Biorheology. 21:709-722.

Peskin, C. S. 1975. Mathematical Aspects of Heart Physiology. Courant
Institute of Mathematical Sciences, New York.

Printzen, F. W., T. Arts, G. J. van Der Vusse, W. A. Coumans, and R. S.
Reneman. 1986. Gradients in fiber shortening and metabolism across
ischemic left ventricular wall. Am. J. Physiol. 250 (Heart Circ.
Physiol. 19):H255-H264.

Robinson, T. F., L. Cohen-Gould, and S. M. Factor. 1983. Skeletal
framework of mammalian heart muscle: arrangement of inter- and
pericellular connective tissue structures. Lab. Invest. 49:482-498.

Robinson, T. F., S. M. Factor, and E. H. Sonnenblick. 1986. The heart as
a suction pump. Sci. Am. (April) 254:84-91.

Robinson, T. F., S. M. Factor, J. M. Capasso, B. A. Wittenberg, O. O.
Blumenfeld, and S. Seifter. 1987. Morphology, composition, and
function of struts between cardiac myocytes of rat and hamster. Cell
Tissue Res. 249:247-255.

Sagawa, K., 1978. The ventricular pressure-volume diagram revisited.
Circ. Res. 43:677-687.

Sommerfeld, A. 1950. Mechanics of Deformable Bodies. Academic Press,
Inc., New York.

Spencer, A. J. M. 1972. Deformations of Fibre-reinforced Materials.
Clarendon Press, Oxford.

Streeter, D. D. 1979. Gross morphology and fiber geometry of the heart.
Handb. Physiol. (Sect. 2):61-112.

ter Keurs, H. E. D. J., W. H. Rijusburger, R. van Heumingen, and M. J.
Nagelsmit. 1980. Tension development and sarcomere length in rat
cardiac trabeculae. Circ. Res. 46:703-714.

Tozeren, A. 1983. Static analysis of the left ventricle. J. Biomech. Eng.
105:35-46.

Tozeren, A. 1986. Assessment of fiber strength in a urinary bladder by
using experimental pressure volume curves: an analytical method. J.
Biomech. Eng. 108:301-305.

Tyberg, J. V., W. J. Kern, E. H. Sonnenblick, and C. W. Urschel. 1970.
Mechanics of ventricular diastole. Cardiovasc. Res. 4:423—428.

Yellin, E. L., M. Hori, C. Yoran, E. H. Sonnenblick, S. Gabbay, and
R. W. M. Frater. 1986. Left ventricular relaxation in the filling and
nonfilling intact canine heart. Am. J. Physiol. 250 (Heart Circ.
Physiol. 19):H620-629.

BioPHYSICAL JOURNAL VOLUME 54 1988



